Enhanced efficiency in double junction polymer:fullerene solar cells
نویسندگان
چکیده
منابع مشابه
The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency
Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...
متن کاملEnhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots
Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conver...
متن کاملEfficiency Enhancement of Si Solar Cells by Using Nanostructured Single and Double Layer Anti-Reflective Coatings
The effect of single and double-layer anti-reflective coatings on efficiency enhancement of silicon solar cells was investigated. The reflectance of different anti-reflection structures were calculated using the transfer matrix method and then to predict the performance of solar cells coated by these structures, the weighted average reflectance curves were used as an input of a PC1D simulation....
متن کاملQuantum junction solar cells.
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Organic Electronics
سال: 2010
ISSN: 1566-1199
DOI: 10.1016/j.orgel.2010.08.010